
Journal of Computational Physics 179, 539–556 (2002)
doi:10.1006/jcph.2002.7073

A Multiple-Heaps Algorithm for Parallel
Simulation of Collision Systems1

Mo Mu

Department of Mathematics, The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong

E-mail: mu@math.ust.hk

Received July 19, 2001; revised March 18, 2002

We consider the parallel simulation of collision systems. It has wide application,
such as in hard-sphere molecular dynamics simulation for gas dynamics and crystals,
as well as in studying molecular collision dynamics of chemical reactions. With de-
tailed analysis, proper data structures are designed so that the central computational
task is formulated as a consecutive search for the minimum in the collision time
space of O(N 2) entries, with multiple updates on O(N) entries in the same space
per collision step. The abstraction and formulation enable us to incorporate efficient
techniques in computer science into this application, which leads to a heap-based
sequential algorithm of O(N log N) time in one typical collision step, where N is
the number of particles of the simulated collision system. A parallel algorithm of
multiple heaps with a diagonal-oriented mapping is then proposed. We show that
the parallel algorithm is load balanced and the parallel time per collision step is
O((N/P) log(N 2/P) + log P), where P is the number of processors. The parallel
algorithm uses two levels of partitioning independently, one in the particle-based
physical space and the other in the collision time space. An exchange-shift com-
munication algorithm is presented to bridge the two different partitioning schemes.
Besides collision system simulation, the parallel multiple heaps algorithm may find
applications in many other computing areas where a heap-based priority queue needs
to be maintained, such as in fast level-set methods. c© 2002 Elsevier Science (USA)

Key Words: parallel computing; collision system; hard-sphere molecular dynamics
simulation; heap; parallelism; load balance.

1. INTRODUCTION

We consider the parallel simulation of collision systems. It has wide application, such
as in hard-sphere molecular dynamics simulation for gas dynamics [4, 5] and crystals

1 This work was supported in part by Hong Kong RGC Competitive Earmarked Research Grant HKUST593/94E.

539

0021-9991/02 $35.00
c© 2002 Elsevier Science (USA)

All rights reserved.

540 MO MU

[1, 3, 8, 22], as well as in studying molecular collision dynamics of chemical reactions [7].
For the illustration of general characteristics and technical issues, we present the problem
in the context of a hard-sphere molecular dynamics simulation.

Molecular dynamics simulation is classified as soft-sphere and hard-sphere types in terms
of different models of molecular systems. Efficient algorithms have been developed for soft-
sphere molecular dynamics simulation based on the multipole technique [11]. The multipole
technique is used in the potential energy evaluation that is the major computational part in
soft-sphere molecular dynamics simulation. In contrast, in a hard-sphere molecular dynam-
ics simulation, the most time-consuming computation in a typical collision step is to identify
at each simulation step a particle pair with the least collision time. This pair of particles will
collide with one another after the computed collision time and the corresponding velocities
of the colliding particles will change due to the collision. Thus the pairwise collision time
status of the entire system will be updated, and a new search will be conducted for the next
colliding pair. With detailed analysis, proper data structures are designed so that the central
computational task is formulated as a consecutive search for the minimum in the collision
time space of O(N 2) entries, with multiple updates on O(N) entries in the same space per
collision step. The abstraction and formulation enable us to incorporate efficient techniques
in computer science into this application, which leads to a heap-based sequential algorithm
of O(N log N) time in one typical collision step, where N is the number of particles of
the simulated collision system. In practice, parallel computing is essentially necessary for a
realistic molecular dynamics simulation. Based on the sequential min-heap algorithm, we
further propose a parallel algorithm with multiple heaps and a diagonal-oriented mapping.
The algorithm is highly parallel and load balanced. The parallel time per collision step is
O((N/P) log(N 2/P) + log P), where P is the number of processors. The parallel algo-
rithm uses two levels of partitioning independently: one in the particle-based physical space
and the other in the collision time space. An exchange-shift communication algorithm is
presented to bridge the two different partitioning schemes.

Ideal gas in a container is a typical example of a hard-sphere collision system [15]. The
earliest work of using computer simulation of molecular collisions to study gas dynamics
can be tracked back to decades ago in [4, 5]. Another exciting application example of
hard-sphere molecular dynamics simulation is the study of crystals, where harsh repulsive
forces determine the structural properties of a simple liquid and attractive forces are in a
sense of secondary importance [8]. Besides applications of hard-sphere molecular dynamics
simulation, collision systems also appear in the study of molecular collision dynamics of
chemical reactions [7]. Although our parallel multiple heaps algorithm is presented in
the context of collision systems, it may also find application in many other computing
areas where a heap-based priority queue needs to be maintained. For example, in fast
level-set methods [19], a heap is used to quickly locate the lowest point to start with for
constructing the static level-set surface. One can build such a surface piece by piece in
parallel, with certain synchronization along the boundaries, by using our multiple-heaps
technique.

2. PROBLEM SETTING AND A SEQUENTIAL MIN-HEAP ALGORITHM

In this section, we analyze the computational aspects of collision systems in the context
of hard-sphere molecular dynamics simulation. For the physical aspects and applications,
we refer readers to [3–5, 8, 12]. With detailed analysis, we design proper data structures

A MULTIPLE-HEAPS ALGORITHM 541

so that the central computational task is formulated as consecutive minimum searches
with multiple updates per collision step. The formulation will enable us to devise efficient
algorithms using suitable computer science techniques.

Consider a hard-sphere molecular system of N particles, each with its position and
velocity assigned initially. For simplicity, we assume that all the particles are of the same
size and that particle collisions are elastic and between two bodies. We also assume that
attractive forces among particles are negligible. We do not specifically address boundary
effects because a collision between a particle and the boundary can be treated by viewing
the boundary as a virtual particle, which makes the computation uniform for both particle–
particle and particle–boundary collision types.

Let ri (t) and vi (t) be the position and velocity vectors of particle pi at time t . Given a
status PosVel(t) = {(ri (t), vi (t)) | i = 1, 2, . . . , N }, by Newton’s law all particles will move
straight without changing velocity until a collision happens between a pair of particles called
the colliding pair. For each particle pair (pi , p j), i, j = 1, . . . , N , i �= j , define δti j (t) as
the collision time such that pi and p j will collide with one another at time t + δti j (t). It
is easy to calculate δti j (t) from (ri (t), vi (t)), (r j (t), v j (t)) and the particle size as follows
[12]. For simplicity, we omit the time variable t when there is no confusion in the context.
Let vi j ≡ vi − v j and ri j ≡ ri − r j be the relative velocity and position between particles
pi and p j . If

vi j · ri j ≥ 0, (2.1)

pi and p j are moving away from one another, or moving in the same direction and with
the same velocity so that they will never collide with one another. In this case, we define
δti j = +∞ for the particle pair. Otherwise, they are approaching one another, and then we
test the condition

� ≡ (vi j · ri j)
2 − |vi j |2(|ri j |2 − σ 2) < 0, (2.2)

where σ is the sphere diameter. If (2.2) is true, pi and p j will pass by each other without
collision so that we also define δti j = +∞. Otherwise, a collision will happen between pi

and p j after time

δti j = −vi j · ri j − √
�

|vi j |2 . (2.3)

A geometric argument can also be applied for the particle–boundary collision. Notice that
δti j = δt ji so only the upper triangular part of a two-dimensional table is needed for repre-
senting the collision time data while the diagonal part may be used for the particle-boundary
collision times. We denote the collision time data set by ColTime(t).

Denote �t = min{δti j (t) | δti j (t) ∈ ColTime(t)}. Starting from the current time t , the
system will have no collision until time t + �t . Over this time period, each particle moves
at a constant velocity and the position update is given by

ri (t + �t) = ri (t) + �t ∗ vi (t), i = 1, . . . , N . (2.4)

At time t + �t , the pair (pi , p j) corresponding to the minimum collision time �t collide
with one another, which leads to a velocity change for the colliding pair while all other

542 MO MU

particles retain their precollision velocities. The corresponding postcollision velocities for
pi and p j can be computed according to the formulae

vi (t + �t) = vi (t) − �vi j , (2.5)

v j (t + �t) = v j (t) + �vi j , (2.6)

where

�vi j = [vi j (t) · ri j (t)]ri j (t)/|ri j (t)|2. (2.7)

Notice that only two velocity entries have to be updated in PosVel(t) to obtain PosVel(t + �t)
in one time-step advance. Furthermore, if a particle pk is not involved in any collision
in certain consecutive time advance steps over a total period �T time, then besides its
velocity remaining unchanged, its position movement is also accumulative and can simply
be calculated without intermediate updates by

rk(t + �T) = rk(t) + �T ∗ vk(t). (2.8)

More important, for all particle pairs not involved in a collision, the corresponding collision
times are decreased by the same amount �t . Namely,

δtkl(t + �t) = δtkl(t) − �t, k and l �= i, j, (2.9)

where pi and p j are the colliding particles. Therefore, the relative relationship among all
the noncolliding particles in the least-collision-time search procedure is not affected by the
collision either.

These observations allow us to design a more efficient, though slightly more sophisticated,
data structure for PosVel and ColTime, where each entry in PosVel and ColTime stores
the relative value with respect to the time when the corresponding particle (or particles)
was involved in the latest collision. In other words, different entries usually refer to the
data at different times instead of the current (wall clock) time t . Notice that in the least-
collision-time search procedure, only the relative relationship of collision times matters.
So in a collision update for ColTime, instead of decreasing the entry values for the O(N 2)

noncolliding pairs as in (2.9), we equivalently modify the entry values for the other O(N)

pairs by the same increment �t . Namely,

δtkl(t + �t) = δtkl(t + �t) + �t, k or l = i, j, (2.10)

where δtkl is calculated according to (2.3). Notice that these entries need to be updated
anyway due to the corresponding velocity change. With this data structure, an entry needs
to be updated only when the corresponding particle (or particles) is involved in a collision.
To retrieve the corresponding data at time t for an entry in PosVel and ColTime easily
and efficiently, we only need to introduce two auxiliary data structures: one recording the
history of collision times {�tm}, and the other marking for each particle the reference
collision time m. Despite the actual implementation, to simplify the presentation we still
assume in the rest of the paper that all entries in ColTime hold the collision time data
referring to the same time t although they are actually retrieved from the relative values

A MULTIPLE-HEAPS ALGORITHM 543

through indirect addressing and simple manipulation. On the other hand, from the above
discussion we can essentially assume that if pi and p j collide with one another, only those
entries {δtkl |k or l = i, j} in ColTime have to be updated. For the sake of intuition, we also
use an N × N two-dimensional array as the virtual data structure for ColTime although
only the upper triangular part that is physically mapped to a smaller two-dimensional array
in the implementation is needed.

Now we are in a position to formulate the problem in an abstract form. In a hard-sphere
molecular dynamics simulation, a typical collision step is as follows. The first and central
computational task is to identify the next colliding pair. This is determined by a minimum
search in ColTime:

�t = min{δti j | i, j = 1, . . . , N , i ≤ j}. (2.11)

Once �t and the corresponding colliding pair (pi , p j) are identified, the related entries in
PosVel are updated for the particle movement with only O(1) time. Finally the entries in
ColTime, as circled in Fig. 1 (for simplicity we omit δ in δti j), are updated using (2.10)
with O(N) time due to the velocity change caused by the collision between pi and p j .
We denote this subset of ColTime by Qij and call it the updating set. The simulation is
then ready to advance to the next step. In a practical simulation, observable macroscopic
properties such as instantaneous temperature and pressure are computed at certain time
intervals. These quantities are defined in statistical mechanics as certain averages in terms
of the microscopic position and velocity over all particles in the simulated system at the
corresponding time. Such a computation is of O(N) time and is needed only once for a large
number of collision steps depending on the relaxation time of the system. Therefore, the
main concern is to devise efficient algorithms for the consecutive minimum search problem
(2.11) with multiple updates (2.10) per collision step. We consider the sequential case in
this section and the parallel computation in the next section.

Problem (2.11) itself is straightforward if it is considered as a concrete minimum search
procedure without other collision steps and entry updates. A brute-force approach is to

FIG. 1. The table (upper triangular) representation of ColTime. The updating subset Qij consists of the circled
entries to be updated due to a collision between particles pi and p j .

544 MO MU

use a table data structure ColTime.Table to represent ColTime. It is easy to update an arbi-
trary entry in ColTime.Table due to the simplicity of the table data structure. The total update
cost is O(N) per step, as seen from Fig. 1 and (2.10) because only the entries in the up-
dating set Qij need to be updated if pi and p j collide with one another. However, since the
data are not sorted in ColTime.Table, the minimum cost for searching �t defined by (2.11)
is O(N 2). Thus the total cost is O(N 2) in a typical collision step. There is a compre-
hensive survey in [12, 21] (also see references cited therein) on techniques for improving
the computational efficiency. One is the so-called single-event (or soonest-to-occur event)
approach, where the data in ColTime are partially sorted with respect to each particle.
Namely, for each row in ColTime, only the minimum is stored in a Time List data structure
of size N . Now, the global minimum search for �t is done with Time List in O(N). It is
also very memory effective, which is important for serial computers, for ColTime is not
explicitly stored. However, the difficulty is moved to the update procedure for TimeList
after each collision. Since any entry in the list might be affected by a collision, an outer
loop over the N entries is necessary to check for possible updates. Once an entry is iden-
tified for updating a particle, an inner loop over all the other particles is needed to search
for the new minimum and to update the entry because ColTime is not stored. Therefore,
the theoretical worst-case time complexity is still O(N 2) for this part due to the double
loops (see, for example, subroutine HSUPDT on p. 424 in [12]), although some or many
of the inner loops may not be carried out in practice, depending on different collision steps,
applications, as well as models used. The practical performance and the average factor
in front of N are discussed in [21] for several chain dynamics applications of polymeric
fluids using the Rapaport model [18]. Another technique to avoid the inner loop search
over all particles is to keep a Neighbor List for each particle based on the assumption
that only particles in close proximity are destined to collide. This leads to more com-
plexity and uncertainties: First, an optimum geometric range must be determined in order
to define the neighbor list; second, the collision time depends on not only the distance
but also on the relative velocity between each pair of particles; third, neighbor list expi-
ration is checked periodically (i.e., every 100 collisions for some applications [21]); and
fourth, neighbor list construction/renewal is expensive even using efficient data structures,
such as link lists. These factors are again problem dependent. Fine-tuning the code for
each particular application is a challenging task. The other major approach is the so-called
multiple-events (or soon-to-occur events) method. Instead of storing only the soonest-to-
occur event for each particle, multiple soon-to-occur events are stored for each particle
in an unsorted order, which makes the timetable update (i.e., addition and deletion of
an entry) easier with the expense of more memory. The efficiency for searching �t in
this timetable depends on the product of N and the number of events Ne, which again
is problem dependent. On the other hand, with a fixed Ne, the smaller Ne is, the more
expensive the timetable is to maintain (i.e., when the soon-to-occur events set becomes
empty or full for a particle), and the extreme case is the single-event algorithm where
Ne = 1. If Ne is allowed to vary dynamically, say by implementing the multiple events by
a linked list for each particle, then searching would become more expensive. Experiments
in [21] show that the single-event algorithm is approximately 75% faster than the multiple-
events algorithm for molecular fluids but yields equivalent performance for atomic fluids.
More important, these algorithms are designed in the sequential setting and the optimiza-
tion techniques employed make the algorithms very complicated and difficult for parallel
computing.

A MULTIPLE-HEAPS ALGORITHM 545

It is known that there are various sorting and searching techniques available in computer
science. We propose a min-heap algorithm suitable for this application by implementing
the collision time space as a priority queue. The algorithm has the optimal complexity
O(N log N) per collision step. Recall that in a priority queue, the element to be deleted is
the one with the lowest (or highest) priority. At any time, an element with arbitrary priority
can be inserted into the queue. Heap is an important data structure. It finds application
when a priority queue is to be maintained. A min heap is defined as a complete binary tree
that is also a min tree in which the key value in each tree node is no larger than the key
values in its children (if any). For a priority queue application, two standard operations
on a heap are insertion and deletion. Both of them can be implemented by O(log M)

algorithms for a heap of M nodes [13]. Specifically, the insertion algorithm starts with
appending the new node to the tail of the complete binary tree and then pops it up along
the path toward the root until the property of a min tree is satisfied, namely until the key
value of the floating node is larger than that of its parent node. Similarly, the deletion
algorithm starts by replacing the root, the node to be actually deleted, with the node at
the tail position of the heap and then deletes the tail node to have a complete binary tree
of one fewer node, and then it makes the new root node sink down to the children until
the min tree property is satisfied, namely until the key value of the sinking node is no
larger than that of its children. Another operation on a heap changes the key of a particular
node without affecting the tree structure. It is often called decrease key and increase key
in the literature, and we will call it update key in our context. This operation is used, for
example, in the sparse graph version of Dijstra’s algorithm, also called Johnson’s algorithm
[2, 14]. A similar O(log M) algorithm is also available by combining the techniques in
both insertion and deletion operations. Notice that an update action does not change the
tree structure of a heap. So only node swapping is needed in order to maintain the min
tree property after such a key-value update. Therefore, the main idea in the update-key
algorithm is to determine the moving direction of the given updating node in such a node-
swapping procedure, which can be done by comparing the new key value of the updating
node with those of its parent and child nodes. Once we know that the updating node needs
to move up or down, the corresponding node-swapping procedure in insertion or deletion
can then be applied similarly. The implementation of these algorithms is described in
Section 4.

Applying this technique to our case, we represent the collision time space by a min
heap, instead of a table. Since the data are so sorted in a min heap, it requires only O(1)

time for identifying the colliding pair from the root node by using collision time as the
sorting key and adding the corresponding particle indices to the node data field. A collision
between particles pi and p j results in a sequence of key updates for all entries in the
updating set Qij. There are O(N) update-key operations applied to the min heap of O(N 2)

nodes in each typical collision step, so the total time is O(N log N), where the log N
factor in the worst-case upper bound comes from the height of the heap. Similar to the
single-event approach where the inner loops may be skipped for some of the particles in
the time-list updating procedure, many of the update-key operations do not need to go
through a complete path from the root to a leaf node. Furthermore, in the following parallel
algorithm, in addition to the distribution of the update-key operations to many processors,
the tree height for each local heap is also smaller due to the fact that the global tree is
equally distributed among all the processors, which will lead to a very efficient parallel
algorithm.

546 MO MU

3. A PARALLEL ALGORITHM OF MULTIPLE HEAPS

This section studies parallel simulation of collision systems. We first discuss the diffi-
culties and conflicts in the trade-off of efficiency versus parallelism as well as computation
versus communication for the parallel setting. Once these are well analyzed and understood,
it becomes clear how to find a suitable way to solve the problem, which leads to a paral-
lel algorithm of optimal parallel efficiency. The parallel implementation and performance
studies are also presented as the parallel algorithm is developed.

Notice that procedure update key is essentially sequential and difficult for parallelization.
However, we observe that it is a single-node updating procedure, while in a typical collision
step the complete task is to update a total of 2N such heap nodes. Namely, procedure update
key is invoked repeatedly, corresponding to all entries in the updating set Qij, which suggests
certain potential parallelism. For instance, if two updating nodes belong to different subtrees
the corresponding min-heap updates within the subtrees can be carried out independently.
But synchronization is still needed when the subtrees merge together, and after that the
parallelism is lost again. In addition, identification and management of these subtrees with
many updating nodes would considerably increase the complexity and difficulty of the
parallel procedure. Related work on parallel heap algorithms can be found in [6, 9, 10,
17], where concurrent operations on a single heap are allowed to a certain extent by a
window-lock technique.

Another difficulty of parallelism is in the mismatch between partitioning particles and
parallelizing the minimum search procedure. It is natural to partition the whole set of N
particles into P disjoint subgroups {Gk} and assign each subgroup Gk to a processor Pk ,
where P is the number of processors used in the parallel computation. With this physical
space partitioning, it is perfect to parallelize all the particle-based computation, such as
updating PosVel and calculating macroscopic physical properties by statistics. The minimum
search procedure, however, is carried out in the pairwise collision time space. Although a
local search for the local particles in each Gk could be carried out independently in processor
Pk , the assembled data set does not sample the whole collision time space ColTime, only
the part corresponding to certain diagonal blocks of ColTime.Table. The rest of the search
for the global minimum would require substantial communication.

We propose a parallel algorithm for simulating collision systems that adopts two levels
of partitioning: one in the physical space and the other in the collision time space. With the
physical space partitioning as described above, the position–velocity data set PosVel is also
partitioned into P subgroups {PosVelk} and distributed to the processors correspondingly.
This allows full parallelism for all the particle-based computation. We now describe the col-
lision time space partitioning that also allows high parallelism for simultaneously updating
all the 2N entries in the updating set Qij among the O(N 2) entries in the collision time
set ColTime and locating the next colliding pair in O((N/P) log(N 2/P) + log P) time.
Finally, we should address the connection between the two partitionings, where the main
difficulty is in communication.

From the previous discussions, the particle-based partitioning suffers from intensive
communication for the global minimum search over the collision time space. On the other
hand, the sequential min-heap algorithm offers satisfactory efficiency but is not suitable
for parallelism. Thus, in addition to the physical space partitioning we propose also to
partition the collision time set ColTime into P subgroups {ColTimek} and distribute them
to the P processors with each subgroup ColTimek residing in Pk , and the global minimum

A MULTIPLE-HEAPS ALGORITHM 547

search task can then be split into two subtasks. First, each processor Pk conducts a search
procedure over ColTimek to find its local minimum �t k . Then the global minimum is
given by �ti j = min{�t k | k = 0, 1, . . . , P − 1}, which can be easily implemented by a
standard global operation in O(log P) time that is available on any distributed memory
parallel computer. The local minimum search step is fully parallel, and each local minimum
problem can be efficiently solved using the sequential min-heap algorithm presented in
the previous section, where a local min heap for ColTimek is maintained by processor Pk .
In other words, instead of maintaining a single heap for the entire collision time space we
actually use P-distributed min heaps over all the processors. The parallel algorithm has only
one synchronization point at the global min step. This solves the parallelization problem
perfectly.

Next, the load balance, or equivalently the parallel efficiency, depends on two factors: the
distribution of the collision time data set ColTime and the distribution of the updating data set
{Qij} among the processor. Let Mk be the number of entries in ColTimek , i.e., the number of
nodes of the local min heap Heapk in processor Pk . The load balance for both memory and
heap updating would require a balanced partitioning of the node set ColTime so that Mk =
O(N 2/P). Notice that the data set ColTime corresponds to the upper triangular part of the
two-dimensional array ColTime.Table, as shown in Fig. 1. Intuitively it is easier to uniformly
partition a rectangular array into P subsets, say by a column (or row)-oriented wrapping (or
block) partitioning. So we first map the upper triangular part of ColTime.Table to a virtual
rectangular array. This can be done in different ways. For example, as shown in Fig. 2, in a
column-oriented virtual mapping we can merge the columns of the upper triangular part of

FIG. 2. The column-oriented virtual mapping of ColTime.Table (the upper triangular part) to ColTime.-
ColVrt. Table.

548 MO MU

ColTime.Table into pairs in the order of (col1, colN), (col2, col(N − 1)), and so forth, to
obtain an (N + 1) × (N/2) rectangular matrix represented by a two-dimensional array data
structure ColTime.ColVrt.Table. For simplicity, we assume here that N is even. When N is
odd, we simply leave half of the last column empty and unused in ColTime.ColVrt.Table.
Similarly, one can have a row-oriented mapping. Then a uniform stripe partitioning can
be applied to the virtual rectangular data structure straightforwardly. With this uniform
partitioning of ColTime, we have Mk = N (N + 1)/2P for k = 0, 1, . . . , P − 1. Therefore,
the update time is O(log Mk) = O(log(N 2/2P)) per updating node in each processor.

Taking a closer look at the above column (or similarly row)-oriented virtual mapping, we
notice that the processors holding columns (or rows) i and j in ColTime.Table are responsible
for updating many more nodes than others. This implies that these processors have to execute
the local min-heap updates many more times than do others, although all local heaps are
of the same size. So this factor also causes severe load imbalance in computation. Let Jk

be the number of updating nodes in the updating set Qij that are assigned to processor Pk .
Then the total updating time per simulation step for processor Pk is O(Jk log(N 2/2P)).
The corresponding parallel time is O(maxk{Jk} log(N 2/2P)). Therefore, to minimize the
parallel time, it is also necessary to have a uniform distribution of the updating set Qij among
the processors such that Jk = O(2N/P) for k = 0, 1, . . . , P − 1. This would lead to the
load balance in both memory and computation and maximizes the parallelism. The optimal
parallel time is then O((N/P) log(N 2/2P)) for the local minimization step. Also notice
that the updating set Qij changes dynamically from one collision to another according to the
collision pair, and the collision process is random. This prompts us to use a diagonal-oriented
virtual mapping, also known as Bruno–Capello mapping, which ensures that every row as
well as every column is evenly distributed across all processors. Specifically, as shown
in Fig. 3, we order the diagonals in the upper triangular part of ColTime.Table starting

FIG. 3. The diagonal-oriented virtual mapping of ColTime.Table (the upper triangular part) to ColTime.-
DiagVrt.Table.

A MULTIPLE-HEAPS ALGORITHM 549

from the main diagonal toward the upper right corner and merge the diagonals in pair
on the order of (diag1, diagN), (diag2, diag(N − 1)), and so forth, to form another (N +
1) × (N/2) rectangular matrix represented by ColTime.DiagVrt.Table. It is clear that this
virtual mapping also leads to a uniform multiple-heap partitioning when combined with a
uniform partitioning for ColTime.DiagVrt.Table, like the previous column (or row)-oriented
mapping. However, each diagonal only contains at most four updating nodes, those circled
entries of Qij, as shown in Fig. 1. Therefore, if the columns (diagonal pairs) in the virtual
rectangular matrix ColTime.DiagVrt.Table are assigned to P processors in wrapping, it is
guaranteed that each local heap contains at most O(N/P) updating nodes from the updating
set Qij. Namely, each processor executes local min-heap updates O(N/P) times at most.
Thus the parallel time to determine the global minimum is O((N/P) log(N 2/P) + log P)

per simulation step, where the second term corresponds to the global operation to compute
the global minimum from the local minima. It is seen that the parallel time of our algorithm
is of the optimal order.

Finally, let us discuss the computation of the updating set Qij and the connection between
the two levels of partitioning in the physical space and the collision time space, where the
major difficulty is in communication. Recall that the entries in the updating set Qij are δtkl ,
where k, l = i or j . δtkl is determined by (rk, vk) and (rl , vl). On the other hand, SolVel is
partitioned based on particles. First we make (ri , vi) and (r j , v j) available to all processors,
which can be done by the standard global communication procedure one-to-all broadcast in
O(log P) time. All processors are then able to independently compute the updated values
of certain entries in the updating set Qij. For example, processor Pq assigned particle pl can
compute the updated values for δtli and δtl j using its local data (rl , vl) and the data (ri , vi)
and (r j , v j) received from the corresponding broadcast operations. Notice, however, that
ColTime is partitioned independently. So δtli and δtl j are generally not assigned to the same
processor Pq with the collision time space partitioning, but to other processors, say Pr and
Ps , which implies that communication is needed for processor Pq to send δtli to processor
Pr and δtl j to processor Ps . Also, each source processor Pq is assigned many particles and
all processors should participate in the send-receive communication. So care has to be taken
for proper coupling to occur between the two levels of partitioning in different spaces and
for efficient communication of the updating data set Qij.

For illustration, we only consider the subset Qi of Qij, consisting of the entries in column
i (i.e., δtli , l = 1, 2, . . . , i) and row i (i.e., δtil , l = i + 1, i + 2, . . . , N). It is similar for the
other subset, Qj, corresponding to column j and row j , and we have Qij = Qi ∪ Qi. Because
of the symmetry δtil = δtli , the data set Qi exactly corresponds to the whole row i of the
matrix ColTime.Table. Now assume that the particles are assigned to processors by wrap-
ping; namely particle pl is assigned to processor Pmod(l−1,P), l = 1, 2, . . . , N . Therefore,
δtil is computed by Pmod(l−1,P), l = 1, 2, . . . , N after the broadcast for (ri , vi). On the other
hand, for the partitioning of the collision time space, assume that the columns of the virtual
rectangular matrix ColTime.DiagVrt.Table are also assigned to processors by wrapping.
Then according to the original data structure ColTime.Table, we observe for the data set Qi

that starting with the diagonal entry δtii assigned to processor P0, the left-side entries are
assigned to processors by wrapping leftward (i.e., δti,(i−l) �→ Pmod(l,P), l = 0, 1, . . . , i − 1)
and the right-side entries are assigned to processors by wrapping rightward (i.e., δti,(i+l) �→
Pmod(l,P), l = 0, 1, . . . , N − i), respectively. To illustrate the communication pattern, we
show in Table I the correspondence between the entries in the data set Qi and the processor
locations before and after the communication for the case of N = 11, P = 4, and i = 8.

550 MO MU

TABLE I

The Correspondence between the Entries in the Data Set Qi and the Processor Locations

before and after the Communication for the Case of N = 11, P = 4, and i = 8

Source P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2

Row 8 δt81 δt82 δt83 δt84 δt85 δt86 δt87 δt88 δt89 δt810 δt811

Destination P3 P2 P1 P0 P3 P2 P1 P0 P1 P2 P3

In addition, we assume that the P processors are configured as a clockwise ring that can
be embedded into almost all the existing parallel internet-work architectures. Denote the
diagonal index s = mod(i − 1, P). So the diagonal entry δti,i is computed by processor Ps

according to the partitioning in the physical space but is assigned to processor P0 according
to the partitioning in the collision time space. As seen in Table I, the communication for
the data set Qi can be organized into two types. First, for the entries on the right side of
the diagonal one inclusive, δti,i+l is computed by processor Pmod(s+l,P) and needs to be
sent to processor Pmod(l,P), for l = 0, 1, . . . , N − i . In other words, each destination pro-
cessor Pd needs to receive from its partner source processor Pmod(d+s,P), if s �= 0, a pack of
messages

Md = {
δti,i+(d+k P), k = 0, 1, . . . , Kd

}
, (3.1)

where Kd is the largest integer such that i + (d + Kd P) ≤ N , for d = 0, 1, . . . , P − 1. This
can be implemented as a shift operation along the ring, with each processor independently
sending a piece of message to a partner processor at the same distance. The shift is clockwise
if s > P/2 or counterclockwise otherwise in order to take a shorter amount of time. The shift
is unnecessary if s = 0. Since N � P in practice, with the wormhole routing technology as
used in most of today’s interconnection networks, the parallel time for this communication
is O(ts + tw(N − i)/P), where ts is the startup time and tw is the per-word transfer time.
Second, for the entries on the left side of the diagonal one exclusive, δti,i−l is computed
by processor Pmod(s−l,P) and needs to be sent to processor Pmod(l,P), for l = 1, 2, . . . , i − 1.
Therefore, each destination processor Pd needs to receive from its partner source processor
Pmod(d−s,P), if necessary, a pack of messages

Md = {
δti,i−(d+k P), k = 0, 1, . . . , Kd

}
, (3.2)

where Kd is the largest integer such that i − (d + Kd P) ≥ 1, for d = 0, 1, . . . , P − 1.
Notice that in this communication, the source and destination processors appear in pairs,
as seen in Table I. That is, if processor Ps sends a piece of message to processor Pd ,
then processor Pd should also send another piece of message to processor Ps . Thus this
part of the communication can be implemented as a parallel pairwise exchange proce-
dure. The pairing of the P/2 pairs is determined by the index s. Similarly, the par-
allel communication time is O(ts + twi/P). Overall, in terms of the number of mes-
sages passed, the above exchange-shift algorithm for communicating the data set Qij is of
O(1) time.

A MULTIPLE-HEAPS ALGORITHM 551

4. NUMERICAL RESULTS

In this section, we discuss the implementation details and report on the numerical results.
The parallel method presented in this paper has been implemented and tested [20] on

Intel’s Paragon, which is a distributed memory and message-passing parallel computer. For
the reader’s convenience, the full code is also made available for downloading on the web
site http://www.math.ust.hk/˜mamu/MultipleHeap. The code can be easily ported to other
parallel computers and clusters by implementing the communication part in Algorithm 4.2
using a machine-independent virtual platform such as PVM or MPI, as discussed later. We
provide technical details for the key elements of the implementation.

There are two levels of partitioning in the method, as discussed in Section 3. One is the
physical space partitioning that uniformly maps N particles to P processors. We use the
wrapping-around mapping in the implementation, where the relation between the global
index of a particle i and the corresponding processor ID pid(i) is given by

pid(i) = mod(i, P). (4.1)

All the physical variables and their computations directly associated with particles, such as
position, velocity, and macroscopic properties, are mapped to processors according to this
partitioning.

The other is the partitioning applied to the collision time space. The diagonal-oriented
virtual mapping, as illustrated in Fig. 3, from the collision time for a particle pair (i, j) with
i ≤ j to the processor ID pid(i, j) is implemented by

pid(i, j) =
{

mod(j − i, P), if j − i < N/2;
mod(N − (j − i) − 1, P), otherwise.

(4.2)

This uniformly partitions the collision time data into P subsets, with each being imple-
mented as a local heap in each processor, and guarantees the load balance for updating the
collision time space after each collision.

The local min heap in the node program for each processor can in principle be imple-
mented by any data structure suitable for a binary tree, where we implement a tree node as
an object with pointers to its parent and two children, a key value for the collision time, and
two indices (RowId ColId) for the corresponding particle pair. insertion and deletion are
two standard textbook algorithms, and their program details can be found in [13]. update
key is less trivial, we provide its pseudocode for reader’s convenience .

ALGORITHM 4.1. update a node in a min heap.
procedure UpdateKey(CurrentNode : TreePointer, CollisionTime : real);
{CurrentNode is a pointer to a node in a min heap. On input, it points to the node to be
updated. CollisionTime is the corresponding new sorting key value}
begin

{Update the key value}
CurrentNode ↑ .key = CollisionTime;
{Record the input node}
NodeIn = CurrentNode;
{First, check if the key value of the updating node is less than that of its parent
node, if any. If so, pop it up like in insertion}

552 MO MU

ParentNode = CurrentNode ↑ .Parent;
while (ParentNode �= nil and CurrentNode ↑ .key < ParentNode ↑ .key) do
begin

{exchange CurrentNode with its parent by calling a procedure
Swap. On return, CurrentNode points to its original parent before swapping.}
Swap(CurrentNode, ParentNode);
{Continue to pop the updating node up}
ParentNode = CurrentNode ↑ .Parent;

end;
{If the updating node has been popped up, the heap update is done}
if (NodeIn �= CurrentNode) exit;
{Otherwise, make the updating node sink down like in deletion}
LeftChildNode = CurrentNode ↑ .LeftChild;
RightChildNode = CurrentNode ↑ .RightChild;

while (LeftChildNode �= nil or RightChildNode �= nil) do
begin

{Select the swapping node from the two child nodes}
if (LeftChildNode = nil) then

SwappingNode = RightChildNode;
elseif (RightChildNode = nil) then

SwappingNode = LeftChildNode;
else

{There are two children. Select the swapping node with smaller key value}
if (LeftChildNode ↑ .key < RightChildNode ↑ .key) then

SwappingNode = LeftChildNode;
else

SwappingNode = RightChildNode;
endif

endif
endif

{Swap the updating node with the swapping node}
Swap(CurrentNode, SwappingNode);
{Continue sinking}
LeftChildNode = CurrentNode ↑ .LeftChild;
RightChildNode = CurrentNode ↑ .RightChild;

end;
end;

Using a pointer ColTimeHeap to the root node of the local min-heap, the local colliding
particle pair is identified by

i = ColTimeHeap ↑ .RowId,

j = ColTimeHeap ↑ .ColId.

For each entry δtkl ∈ Qij the new collision time value is computed and

UpdateKey(HeapNode(k, l),δtkl)

A MULTIPLE-HEAPS ALGORITHM 553

is invoked by the corresponding processor, where HeapNode(k, l) is the pointer to the
min-heap node corresponding to the particle pair (pk, pl).

Based on the min heap, the multiple-heaps algorithm for parallel simulation of collision
systems can be implemented by the following pseudocode.

ALGORITHM 4.2. A multiple heaps algorithm for parallel simulation of collision systems
is as follows.

procedure MultipleHeaps;
{Multiple heaps algorithm for parallel simulation of collision systems}
begin

{Obtain the multiprocessor configuration}
P = NumNodes();
k = MyNode();
{Initialization}
Initialize the local data structures PosVelk, ColTimek, Heapk ;
for each collision step ColStep do
{Execute collision}
begin

{Identify the local colliding pair from Heapk}
tloc = ColTimeHeap ↑ .Key;
iloc = ColTimeHeap ↑ .RowId;
jloc = ColTimeHeap ↑ .ColId;
{Identify the global colliding pair (pi , p j) and the corresponding
collision time ti j by the global – min procedure}
GlobalMin(tloc, iloc, jloc, ti j , i, j);
{Particle movement up to the position and velocity change caused
by the collision between pi and p j .}
Update PosVelk ;
{Communication for (si , vi) and (s j , v j) by broadcasting}
Broadcasting (si , vi);
Broadcasting (s j , v j);
{Compute the updating set Qij}
Compute δtil and δt jl if I hold particle pl for l = 1, 2, . . . , N ;
{Communication for the updating set Qij by the exchange-shift procedure}
Exchange(the left side of the diagonal entry of Qi);
Shift(the right side of the diagonal entry of Qi);
Exchange(the left side of the diagonal entry of Qj);
Shift(the right side of the diagonal entry of Qj);
{Local heap update}
for each entry δtqr ∈ Qij assigned to me do

UpdateKey(HeapNode(q, r), δtqr);
end;
{Compute macroscopic properties every NumStepMacro steps}
begin

if Mod(ColStep, NumStepMacro) = 0 then
Compute macroscopic properties;

end;
end;

554 MO MU

We note that in this parallel implementation, only four communication procedures, Glob-
alMin, Broadcast, Exchange, and Shift, plus two primatives, NumNodes and MyNode,
involve parallel programming. The shift and exchange procedures are easily implemented
by using (3.1) and (3.2), respectively. Others can be found in a standard parallel library for
any platform supporting distributed memory and message-passing parallel programming.
Furthermore, besides the min-heap part for searching and updating the collision time in
order to improve the computational efficiency, all the other computational components,
such as initialization, position and velocity, and macroscopic properties, remain the same
as in any standard hard-sphere molecular dynamics simulation system, and their parallel
implementation is straightforward. This implies that the speedup is achieved only by exploit-
ing parallelism without affecting the physical properties and versatility of the molecular
dynamics simulation approach, as already demonstrated in the literature for a variety of
applications [12, 20, 21].

We now report on the practical performance of our parallel method on Intel’s Paragon.
Our Paragon system has 140 compute nodes, with 128 nodes allocated for the computational
purpose. Each compute node has an Intel i860 processor and 32 MB of memory. Under the
scope of this paper, we are concerned with reducing of computational time by using parallel
computing. As discussed earlier, the core and dominating computational part is the loop over
all the collision steps, while other parts are much less time-consuming, not executed at every
collision step, and physically unchanged. Therefore, we focus on the practical time reduction
of the core loop of collision steps by using the multiple-heaps parallel algorithm. Consider
the simulation of N particles in a closed domain with the reflecting boundary condition.
Initially, the domain is separated into two regions by a barrier, where the temperatures and
densities are different for the two regions, but each region is in its equilibrium state locally.
For each region, the initial positions are assigned based on the FCC (faced-centered cubic)
lattice, and the initial velocities are assigned based on the Maxwell distribution. At time
0, the barrier is removed, and the particles start to collide, as in a gas mixture application.
We measure the parallel time (wall-clock time) on our Paragon after 1000 collisions by
using the full configuration of 128 processors, with the number of particles N varying from
several hundred to over 3000. As seen in Fig. 4, the parallel time is only limited to a few
minutes for all the cases. For comparison, we also measure the time of the sequential code
running on UltraSparc-I for the same simulation. Notice that ideally we should measure the
time reduction by running the sequential code on a single processor of the same parallel
machine. However, because Paragon’s i860 processor has relatively slow speed and small
memory due to the rapid development of hardware technology in the past a few years, it
is not suitable for running a large simulation on such a single processor for the sequential
purpose; it is suitable only for the parallel purpose. The UltraSparc-I machine (167 MHZ)
we use has 196 MB and a theoretical peak performance of 333 MFLOPS, while the i860
processor has only 32 MB and a theoretical peak performance of 75 MFLOPS, as reported
in the Netlib Benchmark. As seen in Fig. 4, the sequential time on UltraSparc-I exceeds
1500 s for a 3000-particle simulation. So the sequential simulation on Paragon would easily
take several hours per 1000 steps because i860 is about four times slower than UltraSparc-I,
while the parallel time is just under 5 min, which clearly demonstrates the substantial time
reduction when using our parallel algorithm, and the gain rapidly increases as the number
of particles increases. We refer the reader to [20] for more details about several physical
simulations of up to 122,000 collisions with up to 4900 particles while running our parallel
code on Paragon.

A MULTIPLE-HEAPS ALGORITHM 555

FIG. 4. The time performance of the multiple-heaps parallel algorithm on Paragon using 128 processors
versus that of the sequential min-heap algorithm on UltraSparc-I for 1000 collisions with different numbers of
particles. Notice that UltraSparc-I is about four times faster than a single Paragon processor.

5. CONCLUSIONS

In this paper, we analyze the computational issues in parallel simulation of collision
systems and design proper data structures such that the central computational task can be
formulated as a consecutive minimum search problem with multiple updates per collision
step. It leads to a sequential min-heap algorithm for efficiently identifying colliding pairs
and updating collision times. A parallel algorithm with multiple heaps and diagonal-oriented
partitioning for the collision time space is also presented. The algorithm is highly parallel,
load balanced, and of the optimal order of parallel time. The partitioning in the physical
space is bridged with the partitioning in the collision time space by an efficient exchange-
shift communication scheme for the updating set in the collision time space.

The parallel algorithm is in principle applicable to all collision systems although the
technical issues are presented in the context of hard-sphere molecular dynamics simulation
applications. It has been used in gas dynamics simulation based on the Boltzmann gas kinetic
theory, which provides an alternative approach for studying the gas dynamics properties,
especially when difficulties occur in both the macroscopic and microscopic PDE-based
approaches. Besides molecular dynamics simulation, the parallel algorithm may also be ap-
plied to other computing areas where a priority queue is needed. The work may be extended
to systems where the repulsion effect is present, or where collision may involve more than
two particles. The latter case may lead to a more accurate model than the Boltzmann theory
based on the bimolecular collision assumption.

556 MO MU

ACKNOWLEDGMENTS

The author thanks the referees for the helpful and constructive comments and suggestions that substantially
improved the presentation of the manuscript. The author also thanks C. H. Siu and S. H. Wong for their participation
and help in the code development and data collection in this project, in particular the timing data used in Fig. 4.

REFERENCES

1. D. J. Adams, Chemical potential of hard-sphere fluids by Monte Carlo methods, Mol. Phys. 28, 1241 (1974).

2. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms, (Addison–Wesley, Reading,
MA, (1983).

3. B. J. Alder and T. E. Wainwright, Phase transition for a hard sphere system, J. Chem. Phys. 27, 1208 (1957).

4. B. J. Alder and T. E. Wainwright, Studies in molecular dynamics. I. General method, J. Chem. Phys. 31, 459
(1959).

5. B. J. Alder and T. E. Wainwright, Studies in molecular dynamics. II. Behavior of a small number of elastic
spheres, J. Chem. Phys. 33, 1439 (1960).

6. J. Biswas and J. C. Browne, Simultaneous update of priority structures, in Proceedings of the International
Conference on Parallel Processing, p. 124 (Pennsylvania State University Press, Pennsylvania, PA, 1987).

7. J. M. Bowman, Molecular Collision Dynamics, Topics in Current Physics 33 (Springer-Verlag, Berlin/New
York, 1983).

8. D. Frenkel and B. Smit, Understanding Molecular Simulation—From Algorithms to Applications (Academic
Press, San Diego, 1996).

9. C. C. Ellis, Concurrent search and insertion in 2-3 trees Acta Inf. 14, 63 (1980).

10. C. C. Ellis, Concurrent search and insertion in avl trees, IEEE Trans. Comput. C 29(9), 811 (1980).

11. L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73, 325 (1987).

12. J. M. Haile, Molecular Dynamics Simulation: Elementary Methods (Wiley, New York, 1992).

13. E. Horowitz and S. Sahni, Fundamentals of Data Structures in PASCAL, 3rd ed. (Freeman, New York, 1990).

14. D. B. Johnson, Efficient algorithms for shortest paths in sparse networks, J. ACM 24, 1 (1977).

15. M. N. Kogan, Rarefied Gas Dynamics (Plenum, New York, 1969).

16. V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing Design and Analysis of
Algorithms (Benjamin–Cummings, Redwood City, CA, 1994).

17. V. N. Rao and V. Kumar, Concurrent access of priority queues, IEEE Trans. Comput. C 37(12), 1657 (1988).

18. D. Rapaport, Molecular dynamics simulation of polymer chains with excluded volume, J. Phys. A. 11, L213
(1978).

19. J. A. Sethian, Level Set Methods (Cambridge Univ. Press, Cambridge, UK, 1966).

20. C. H. SIU and S. H. Wong, Molecular Dynamics of Hard Sphere Simulation, FYP-1999 (Dept of Math, Hong
Kong University of Sci. and Tech, 1999).

21. S. Smith, C. Hall, and B. Freeman, Molecular dynamics for polymeric fluids using discontinuous potentials,
J. Comp. Phys. 134, 16 (1997).

22. W. W. Wood and J. D. Jacobson, Preliminary results from a recalculation of the Monte Carlo equation of state
of hard-spheres, J. Chem. Phys. 27, 1207 (1957).

	1. INTRODUCTION
	2. PROBLEM SETTING AND A SEQUENTIAL MIN-HEAP ALGORITHM
	FIG. 1.

	3. A PARALLEL ALGORITHM OF MULTIPLE HEAPS
	FIG. 2.
	FIG. 3.
	TABLE I

	4. NUMERICAL RESULTS
	FIG. 4.

	5. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

